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IIT Research Institute Project No. M6152

DESIGN OF STATICALLY DETERMINATE TRUSSES
FOR MINIMUM WEIGHT AND DEFLECTION

by Ralph L. Barnett

ABSTRACT

The stiffness/weight ratios of statically determinant
plane or space trusses are maximized by adjusting their bar
areas and by optimizing their configurations. When minimum
bar areas are specified together with the outline of a truss,

a simple nonlinear programming problem is obtained which yields
a global optimum. In the pure deflection problem where minimum
bar areas are not assigned, three cases are encountered. In
one, no physical solutions exist; in the second, a unique set
of bar areas are obtained which represent the absolute minimum
weight design for a specified deflection or conversely; and in
the last, a degenerate case is obtained in which positive, nega-
tive, or zero deflection can be achieved at a node with an in-
finite number of truss designs of vanishing weight. Under

very special circumstances the minimum deflection trusses dis-
play uniform stresses. Here, the optimum truss configuration
corresponds to a Michell structure designed for equal tensile
and compressive stresses. In general, however, the truss out-
line may be adjusted to produce the degenerate case in which
any deflection is obtainable with structures of arbitrarily
small weight.
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IIT Research Institute Project No. M6152

DESIGN OF STATICALLY DETERMINATE TRUSSES
FOR MINIMUM WEIGHI AND DEFLECTION

by Ralph L. Barnett

I. INTRODUCTION

As materials of ever increasing strength are made avail-
able, the proportioning of structural components will be
governed more and more by stiffness and stability rather than
strength, This report addresses itself to the problem of de-
signing a statically determinate plane or space truss under
a single load system so that its stiffness/weight ratio is
maximum. This may be accomplished by optimizing the location
of the truss nodes and by optimizing the distribution of bar
areas; both procedures are treated.

Specifying the truss outline together with certain member
sizes, our first studies required that the 'open'" bar areas in
the truss be varied to produce a given node deflection with a
minimum volume of material. Depending on the loading and the
specified deflection, three situations were encountered. In
one, no physical bar areas exist which will satisfy the deflec-
tion requirement. In another, one finds an infinite number of
bar area distributions which produce not only the specified
deflection, but also, negative deflections or zero deflection
at the given node. For this case, when strength and stability
are disregarded, any deflection can be achieved with trusses
of vanishing weight. In the final case, a unique bar area
distribution is obtained which represents the absolute min-
imum weight design of the truss. One of the characteristics of
this truss is that the product of the actual stress and the
virtual stress is the same for all bars; the virtual stresses
arise from a unit load placed in the direction and at the node of
the desired deflection. Designs of minimum weight and uniform
stress beams and trusses are compared for equal constant depth



members. The beam is found to be superior to the truss on a
strictly stiffness/weight basis,

In our second study, we again consider a truss of fixed
outline with certain member sizes specified; only here, the
open bar areas are required to be no smaller than certain
specified minimum areas established from perhaps code, strength,
or stability requirements. If the deflections of such a truss
are excessive when the bar areas are taken as their minimum
specified values, a method is presented for stiffening the
truss with a minimum increase in the weight. The associated
mathematical problem may be formulated as a nonlinear program-
ming problem with a nonlinear objective function and linear
constraints. A very rapid procedure suitable for a desk cal-
culator is described for finding the exact solution to this
problem in a finite number of iterations. The resulting truss
is unique and represents the absolute minimum weight design
producing a specified node deflection.

In our final minimum weight design problem, both the loca-
tion of the truss nodes and the bar areas are allowed to vary.
For this problem, previous investigators have concluded that
the optimum stiffness/weight truss is a Michell structure. We
show that this uniformly stressed structure is optimum only
when the actual and virtual loadings are proportional. When this
is not the case, an infinite number of truss configurations can
be found which produce any desired node deflection, including
zero deflection, with a structure of vanishing weight.



IL. TRUSSES WITH GIVEN CONFIGURATIONS

The deflection of any joint of a pin-connected truss is
given by the virtual work expression

" SuL
where, for any member, S is the direct stress resulting from
the applied loading, u is the direct stress resulting from a
unit load applied in the specified direction at the joint where
the defelction is desired, L is the length, A is the area, and

E is the modulus of elasticity. The summation extends over all
bars in the structure,

Consider the bars in a statically determinate truss to be
divided into two groups. In the first, the members will be com-
pletely described and denoted by the subscript c(closed). 1In
the second group, everything except the member areas will be
specified and these will be treated as open parameters. This
group will be denoted by the subscript o. Equation (1) may be
rewritten as
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where the symbols c and o Mean the summation over

the members of group ¢ and summation over group o respectively.
Since we are considering a design problem as opposed to an
analysis problem, the deflection A will be specified and the
areas A, will be sought. It is then meaningful to distinguish
four cases. These will be treated in the following sections.

Case 1: The sign of the product Souo is either non-positive or

non-negative for all members and the left side of Eq. (2) is
zero; or analytically,
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A - Zc EC = 0 and either S_u_ = 0 or S u = 0 for

c
all members o.

For this case, Eq. (2) cannot be satisfied using only
finite values for A,. Thus, no physical solution exists.

Case 2: The sign of the product S u  is different from that

of the left side of Eq. (2) for all members; or analytically,

S

O O

u
SIRTIND <= 0 for all members o.
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For this condition, the signs of the right and left side
of Eq. (2) cannot be made the same unless negative values of
the areas Ao are admitted. Again, no physical solution exists.

Case 3: The product Sou is positive for some truss members

o
and negative for others,

Souo-‘ 0 and Souo > 0 for the members o.

We shall show that in this case any specified deflection
value can be obtained using a truss of arbitrarily small weight,
Let each open member with a negative product Souo have an area Al’
and let the members with a positive product Sou0 have an area A2.
Then, Eq. (2) may be written as

- - ]
po ¥ Setele 1 Y Solole 11 V| Zeloloy (3)
ey AE, AZ o Eo Ay o Eo i
where the symbols , and __ are the sums over the members with
+ 0 -0
positive and negative products S _u_ respectively. Solving Eq.(3)

o o
for Al we find that any finite deflection A can be achieved with

non-negative areas A1 and A2 when A1 is given by
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and A2 is taken sufficiently small. It is clear that

lim A, = 0

1

Az—-O

(5)

Physically, we note that the stresses and deflections at joints
other than the one with the specified deflection approach in-
finity as the two areas Al and A2 approach zero.

It can be seen from Eq. (3) that by ''beefing up' members
with negative products Souo (increasing Al), the deflection is
increased. On the other hand, by making such members more
flexible we produce unusual effects such as upward deflections
of simply supported trusses under downward acting loads. This
situation is illustrated in the photograph shown in Fig. 1.

If the flexibility of members with Sou < 0 are adjusted so that
zero deflection is obtained at the specified node, this condition
will persist as the loading is increased or decreased propor-
tionally.

Case 4: The sign of the product Sou is the same as that of

o
the left side of Eq. (2) for all members; or analytically,

S u

o)
p——TI P > 0 for all members o.
A = ) cC C ¢C
<- AE
c cc

The numerator and denominator in the above fraction will be
considered, without loss in generality, as non-negative quantities.
For this case, we shall find a set of bar areas Az which minim-
ize the truss weight subject to the condition that A is a specified
constant.
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The weight of a truss may be written

—
W= )
s

AL, + ,; o AL (6)

where p is the weight density of a bar. Repeating Eq. (2),

deflection is

Using Lagrang
areas A may

N
— +-lg — & — specified constant. (7)

e's method of undetermined multipliers, a set of
be found from Eqs. (6) and (7) which render W

statlonary, hence,

= wli))
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where A is th
in Eq. (8), s

-
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e Lagrangian multiplier. Performing the operations
olving for A , and eliminating A by Eq. (7), A

becomes
T 1/2
SouO \> Souopo} .
KR p E J E (0}
AT 00 O 0 (9)
o ¢ S u L
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The weight W
Eq. (9) into

associated with A; may be found by substituting

(6):
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o Souo 1/2 ;
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p AL + — (10)
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We shall now show that the stationary value W is an ab-
solute minimum; i.e., for any set of areas A, 2 0 satisfying
A = specified constant, w < W.

Define F = W - W

Using Eqs. (6) and (10), F becomes

2
{ s up \1/2 ]
z_ o o0 o L
F 5 AL + ) AL (Y AL + =0 "o °l (11)
h %T Peficte & Poftoto ~ & Pefcte ~ S u L,
l A‘>J AT )
c c ¢

Substituting for A from Eq. (7), one obtains

(3 e[l

F = — }_ Zo%cto pAL ,
\ SOU.OLO o) 0O 0 0 ‘l !
. TAE_ ’
o O O

\

The quantity in braces is non-negative by Schwarz's inequality.
Since the quantity
- Sou LO

— A
o

is also non-negative, F 2 0. Q.E.D.



It should be noted that the weight of the''open'' members
described by the second term in Eq. (10) is inversely pro-
portional to the specific stiffness E/p. This ratio is ap-
proximately equal to 108 in. for most of the common metals;
for ceramics we find specific stiffnesses as high as 109 in.

If a truss is designed using one material, Eq. (9) indic-
ates that in the optimum stiffness/weight truss the product of
the actual stress and the virtual stress is constant over all
the open members, i.e.,

v
S ul
cc e
S0 ug EA- Z: Ac
==z = Tlsa 175 | = constant (13)
L_{ oo Lj
o

When the actual and virtual loadings are proportional, S=ku
where k is a constant. For such cases it is evident from Eq.(13)
that the optimum deflection design is a uniformly stressed truss.

In Fig. 2 weight comparisons are made among minimum weight
beams and trusses and uniform stress trusses when the designs
are based on deflection. The detailed weight relationships for
these members are developed in Appendix C. The design of op-
timum stiffness/weight beams is outlined in Appendix A; the
weight of a uniform stress truss designed on the basis of deflec~
tion is given in Appendix B.

For low values of L/d where shear deformations are signif-
icant, a beam is found to be far superior to a truss when the
designs are based on stiffness. For large values of L/d, most
of the truss weight is concentrated in the chords to resist bend-
ing deformation. The resulting trusses are quite similar to
webless I-beams and the comparisons drawn for this "ideal' member
in Table 1 and Fig. 4 of Ref. 1 hold exactly for the trusses when
their L/d approach infinity.
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IIT. TRUSSES WITH GIVEN CONFIGURATIONS AND MINIMUM BAR SIZES

A, Design Algorithm

Of the four cases discussed in Section II, only the third
and fourth gave rise to physically attainable solutions. In
both of these cases the optimum areas for the open members were
established without considering the consequences of strength,
stability, corrosion, or code requirements. In this section we
shall again examine cases three and four; but this time, the
open members will be assigned minimum areas based on such cri-
teria.

Consider a truss loaded in such a manner that some of the
open members have positive products Sou0 and some negative.
Suppose that the deflection at some joint of this truss is ex-
cessive when minimum bar areas Am are used in the members.
Since the specified deflection A can always be taken as non-
negative, the foregoing situation can be expressed as

bono N 84 Lo RS 1SoUolo | e S.u.L, (16
- + 0 EoAm -0 EoAm l e EcAc

With only the areas of the open members at our disposal, we

must try to reduce the magnitude of the right side of this in-
equality to the specified value A. Clearly, the magnitude is
reduced when the areas of the (+ 0) group are increased and when
the areas of the (- 0) group are decreased. The latter course
is preferred since it is accompanied by a decrease in the truss
weight. However, in Eq. (14) the members in the (- 0) group
have already the smallest admissible areas. The remaining
possibility is to increase the areas of the (+ O0) group with a
corresponding increase in truss weight.

There are circumstances in which the flexibility of the
closed members are so great that the specified deflection can-
not physically be achieved. The condition for the existence

11
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of a solution is found from Eq. (14) when the areas of the
(+ 0) group are allowed to approach infinity; hence,

Case 5:
_ -~ lg L
T Seucke S Potet0
-/ EAT i EA=O (15)
c cc -0 “o'm
physical solution is impossible.
Case 6:
v S u L S ul
\ c cc v "o 00
b EAYT LtEA 7O (16)
c c'c -0, o '

physical solutions are possible.

Infinitely many solutions exist when the inequality of
Eq. (16) holds; however, only one minimizes the truss weight.
The following procedure stiffens a truss with a minimum increase
in weight.

(1) Let the minimum areas be used for those members in which
the product Souo is negative. These members should
now be included in group c.

(2) Treat the remaining areas as open parameters (group o)
and determine their magnitudes from Eq. (9).

* .
(3) If any of the areas Ao assume values lower than their
minimum values, increase their magnitudes to their
minimum values and transfer them to group c.

(4) Return to Step 2 and repeat the process until the
areas determined by Eq. (9) are all greater than
or equal to their minimum values.

After demonstrating this design procedure by the following
example, we shall return to Step 3 and comment on its validity.

12
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B. Example

Design the truss shown in Fig. (3-a) so that the downward
deflection at joint G is equal to 55a/E and the weight is a
minimum,

1 8
l

b) 4
+6
AN
AN
+7/2 +8/2
7777 7/0/77
c) Su

Fig. 3 SIMPLY SUPPORTED TRUSS

13
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Some of the properties of the truss shown in Fig, 3 are given

in Table 1.

TABLE 1
TRUSS PROPERTIES

Member |{Designation sziigied Sﬁ?ﬁ;ﬁﬁgd Su | L ‘VSu'iL’VSu'{SuL/Am
Area I |
AB 1 0.5 7 V2 aj2.646 3.742a14 V2a
AG 2 0.5 7/2| 2a 11.871|3.742a|14a
BC 3 1.0 6 | 2a {2.449/4.899al12a
' BG 4 0.2 T\ 2P L P -5V2a
CD 5 0.5 5 V2 al2.236]3.162al10V2a
cG 6 0.2 1 V2 a{1.000|1.414a] 5V2a
DG | 7 0.5 i5/2{ 2a [1.581/3.162a(10a
1 s ' E ‘

The truss deflection, when specified and minimum bar areas are

used, is given by the sum of the righthand column;

Deflection = 9-9—'-3—16-’—3

However, the specified deflection is

55.000 a

A = E

Compute Eq., (16):

SlulL S

_ 1,
E Kl E A I

therefore, solutions exist.

14

44 S4u4Ly, - 55a 14V?a '

}

sV2 a
E

thus,




Step 1:
Set A4 = (0.2 and transfer it to group c. Then

E: Sclcle - 14‘!§1a . 5V2 a _12.728 a
E A E E E
¢ c
Step 2:
3 N 1/2
. 4‘bouo is’(Souo) L,
AT =
(o] ».‘:- SCuCLC
EA - . -'A' o
¢ c

% ‘VSouo (16.379)
Ao = 55.000 - 12.728 0.3875 (Souo)

1/2

Member | Minimum Areal Az
l
1 0.5 | mm———
2 0.5 . 0.7250
3 *
3 1.0 §O.9490 - A3- A3m
4 0.2 | mmm——-
5 0.5 %0.86645
6 0.2 | 0.3875
7 0.5 | 0.6126
Step 3:
Set A3 = 1,0 and transfer to group c. Then
\" ScYcle _12.728 a | 12.000 a _ 24.728 a
«— EA E E E
c c’c
Step 4:

Return to Step 2.

% ‘VSOuO(11.480)

A - 1/2
o ~ 55.000 - 24.728

= 0.37923 (Souo)

15
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Memberi

. . |
Minimum Area ! A

i o]
1 0.5  |-=-----
2 0.5 0.70954
3| 1.0 | —mmmme-
4 0.2 |=---e--
5 0.5 0.84796
6 | 0.2 0.37923
7 i 0.5 ;0.59956

*
Note that Ao > A.m and the procedure ends.

C. Summary

Column (2) lists the optimum areas.

(1) (2) . (3) (4) (5)
Member |Area (Am or Ao) ? SuL./A AL AL
1 0.5000 | 19.79900a | 0.7071a 0.7071a
2 0.7095 . 9.86554a | 1.4190a 1.0000a
3 1.0000 ©12.00000a | 2.0000a 2.0000a
4 0.2000 | -7.07105a | 0.2828a 0.2828a
5 | 0.8480 | 8.33889a | 1.1991a 0.7071a
6 0.3792 } 3.72916a } 0.5362a 0.2828a
7 0.5996 | 8.339%4a | 1.1992a 1.0000a
55.00098a  7.3434a 5.9798a

Using these areas the

deflection is computed in column (3) as a check on the computa-

tions.

The
column (4),

is given in column (5).

Step 3
quires elaboration.

When an optimum area A,

volume of material in the optimum truss is given in
and the volume of material based on minimum areas

of the design procedure is the only step which re-
*

is increased to

its minimum value, the optimum values of all the other member

areas are affected.

16

If such an increase can cause some of the




optimum values of the open members to increase, our design
procedure breaks down. There would always be the possibility
that we had assigned a minimum value of area to a member which
might have required a larger area after other member areas had
been increased to their minimum values in accordance with

Step 3. We must, therefore, show that an increase in any op-
timum area value will decrease all of the other optimum area
values,

Assume that Steps 1 and 2 have been performed. Now con-
sider any open members, say the i th. If we fix that area of
this member at Ai’ the expression for the remaining optimum
areas is found by appropriately modifying Eq. (9); thus,

ST - \1/2
\/Souo \Souopo! L
A¥ - Pofo od Es } © (17)
o ™ S u L S;u,L,
Lo e T
c ‘¢ iti

where the symbol . denotes the summation over all the open
members except Ehe i th. When the area Ai is fixed at its
optimum value A" Eq. (17) reduces to Eq. (9). When the area
Ai is fixed at a value greater than A*, we shall denote the
values given by Eq. (17) as A . We must show that A < Ao or

that

"""""" - {1/2 = - 1/2
Souo ) {Souopo o 0 S Souopo
WPE —\TE; Yo . FE S|\TE Lo
! "o "0 o-i 0 < 0 0 o-1i o (18)
Ao Scucle  5iu3by Y ScUcle i%4hy
- - %
c AcEc AlEi c AbEc AlEi

Since Ai a_A; the denominator on the left is greater than or equal
to the denominator on the right and the inequality obviously holds.
Hence Step 3 is justified.

17



IV. OPTIMUM TRUSS CONFIGURATIONS

The equivalence of maximum rigidity with minimum total
strain energy or uniform stress for a given volume of material
has been suggested by a number of authors (Ref. 2,3,4,5,6)
beginning with H. R. Cox in 1936 and continuing with Richards
and Chan in 1966. Saelman (Ref.7 ) demonstrated in 1958 that
these conditions do not result in maximum stiffness for the
torsion problem; Barnett (Ref. 1,8) proved a similar result
for beams and established the circumstances under which minimum
deflection designs display uniform maximum fiber stresses.

We shall begin this section by re-emphasizing the previously
established relationship between optimum stiffness/weight
trusses and uniform stress trusses.

For statically determinate trusses proportioned entirely
on the basis of stiffness, the minimum weight W* (Case 4) 1is
given by Eq. (10). The corresponding weight of the uniform
stress truss WC is given by Eq. (31) in Appendix B. When all
bar areas are open and only one material is used, we wish to
show that W < W, . Thus,

c

- IS ul. 112
* - (T"!SouoLo [Lolsoi Y Sotolo §7 Lolso‘
R N I RN

(19)

From Schwarz's inequality we conclude that W < W, and that the
equality holds if and only if u, is proportional to So’ i.e.,
bu0 + cSo = 0 where b and ¢ are constants.

We shall first consider the case where the actual and vir-

tual loadings are proportional. Here, S_ is proportional to u

o
and the minimum deflection truss is uniformly stressed.

o

18
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Its weight can be found from either Eq. (10) or Eq. (31) when
we take So/uO = k and only one material is used.

% 2

W= = lé/ﬁ g |Sol1‘o] (20)
This equation represents the lowest possible weight for a
statically determinate truss of given configuration which is
designed for a specified deflection A (or stiffness k/A). If
we wish to select the optimum truss configurations from all pos-
sible minimum weight candidates, we must choose those which
minimize the quantity shown in the brackets of Eq. (20).

In 1904, Michell (Ref.9 ) developed the conditions for

minimizing the quantity Z 'SofLo. The associated minimum weight

structures are usually fognd to be statically determinate; how-
ever, hyperstatic Michell structures may sometimes occur. If
this should happen, it is always possible to find an equal
weight statically determinate Michell structure. Referring to
the literature written in English, this is guaranteed by the
theorems of Sved (Ref. 10) and Barta (Ref. 11) which state

that in pin-jointed plane or space structures of n bars involv-
ing r redundancies, it is possible to obtain a statically deter-
minate structure which yields the least possible weight by

removing r properly chosen redundant bars from the given network.

The theorem holds for fixed, not necessarily equal, permissible
stresses in tension and compression,

To summarize, when the actual and virtual loadings on a
truss are proportional, the optimum stiffness/weight truss is
given by a Michell structure, either statically determinate or
indeterminate, designed for equal magnitude tensile and compres-
sive stresses. Such a structure minimizes the total strain
energy as shown by Richards and Chan (Ref.5 ) who propose this
condition arbitrarily as a general stiffness criterion.

19




The authors H. L. Cox (Ref.3 ) and Hemp (Ref.% ) also adopt
this minimum strain energy argument; but, they incorrectly
propose the general Michell structure without requiring that
all stresses have the same magnitude.

Very few situations arise where the actual and virtual
loadings are proportional. Such cases are encountered when
a single concentrated load acts on a truss and the deflection
under the load is minimized. Examples of this case are fur-
nished by the Michell structures shown in Figs 4a and 4b
which minimize respectively the central and tip deflections.
We note that the length to depth ratio for these optimum mem-
bers may be impractically large; for the optimum simply suppor-
ted beam L/d = V2. For such problems the work done by the
single force F acting through the deflection & must equal the
strain energy U; thus,

In this simple situation it is clear that the structure minimiz-
ing U will also minimize §.

If several loads of the same magnitude F act on a truss
and 6; represents the deflection under the i th load in the
direction of its action, the optimum may again lead to a Michell
structure. Equating the strain energy U to the work done by the
forces F we obtain

Consequently, a structure which minimizes the strain energy will
also minimize the sum of the displacements under the forces F.
To formulate this problem using virtual loads, we note that the
deflection formula, Eq. (1), used in the unit load methed when

20



a. Simply Supported Beam
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Fig. 4 OPTIMUM MICHELL STRUCTURES
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several unit loads are placed on a structure predicts the sum

of the deflections which occur under the unit loads. Thus, in
this case, we would place a unit load to correspond to each

load F. The resulting virtual loading would be proportional to
the actual loading, A would be interpreted as Eféi, and the
optimum truss would be a uniformly stressed Michell structure.
Now, if we wish to minimize the sum of the deflections under

a set of loads of unequal magnitudes, we observe that the actual
and virtual loadings are no longer proportional and that the
optimum truss cannot be a Michell structure.

The two cases leading to Michell structures which we have
just examined are probably the only situations where SO and u,
are proportional. In all other problems minimum strain energy
structures will not provide optimum stiffness/weight trusses.
For such problems it does not appear to be difficult to choose
bar arrangements which lead to the degenerate case described
under Case 3 in Section II. Here, we recall that positive,
negative, or zero deflections can be obtained with an infinite
number of trusses of vanishingly small weight. The structure
shown in Fig. 5a provides an example of a degenerate truss design
for a single concentrated load which does not act at the node

where we are interested in the deflection.

Another example is illustrated in Fig. 5b where it is re-
quired that we minimize the central deflection in a truss under
three symmetrically located forces. Examining Fig. 5a makes
it clear that a virtual unit load placed in the center of the
span cannot be proportional to the three forces shown; conse-
quently, the optimum truss will not be a Michell structure.
Observe that the linkage shown in Fig. 5b will provide an upward
force and movement at the center node to counteract the load Q.
Adding bars to this mechanism, we can obtain the statically

determinate truss shown in Fig. S5c.
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A simple static analysis indicates that the members AB and BC
in this truss will provide negative values of the product Su
when the dimension a is adjusted so that

Q’<§—bP at0

Hence, the conditions of Case 3 are realized; namely, both
positive and negative values of Souo occur in the same truss.
The bar areas may be adjusted in an infinite number of ways

to obtain any central deflection desired. We note in closing
that when the actual and virtual loadings are proportional,

a negative deflection would violate the conservation of energy.
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APPENDIX A™
OPTIMUM STIFFNESS - WEIGHT BEAMS

A detailed development of minimum weight beams designed
for deflection may be found in Ref. 1. The relatively exact
treatment given there for I-beams, unfortunately, masks the
influence of some of the important beam parameters on optimum
beam weight. Here, we obtain a very simple formula for minimum
beam weight by using approximate expressions for the moment
of inertia and shape factor.

P
-

I-Beam Section

The moment of inertia and shape factor for the section shown in

the above figure are,

d2
L< 12 (3Af.+ Aw)
a/A = 1/Aw ... (See Ref. 13).

The deflection of any statically determinate beam is given by

1
dx =*/-[ 5 12Mm + XX dx (21)
LEd (3Af + AW) W

Mm + aVv
ET GA

S S

%
The material in this appendix was taken from the paper by
Barnett (Ref.1l2) and is included here for the sake of completeness.
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where M is the bending moment, V is the shear, m is the vir-
tual moment and v is the virtual shear caused by a unit load
placed where the deflection is desired, G is the shear modulus
and the integral is taken over the span S. The weight of the
beam is given by,

W =fp(Af + A ) dx (22)
S

Using variational calculus, the conditions for minimizing
the weight W subject to the requirement that A equal is speci-
fied constant are

o
7

3 12Mm VV] -
p(A. + A) + + | = 0 (23)
OAg £ Tw Ed%(3A. + A ) OCfy
L. £ W J
/ -
3 [ 12Mm I
p(A. + A ) + v (24)
A Ed®(34; + A ) GAw |

where v is a constand multiplier. Performing the operations in
Eq. (23) and (24), and eliminating 7 with Eq. (21), the optimum
area distributions become

Ag = 3‘5‘&%](\/ V3G) (25)
/— W [( Lmp +\/7‘372’?) dx (26)

Substituting these areas into Eq. (22), we obtain an expression

for the minimum weight beam.

[(/_—Jr ZVVSZ) } (27)

=
o
Il

A E [

2 _ /G (28)

o
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APPENDIX B
CONSTANT STRESS TRUSSES

The weight of a uniform stress truss designed for deflec-
tion often approximates and sometimes equals the weight of a
minimum weight truss. The bar areas of such a truss are given
by
5,
o a

(29)

where 0 i1s a constant. By substituting A, into Eq. (1), the
value of ¢ may be found for any specified deflection; thus

A
c = (30)
E: So' uols
o :'So§ E

Using the expressions for A, and o, the weight of a

constant stress truss Wc becomes,

e‘ S ul |\ |
{ H O O O.:
3 (T e | I B .
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APPENDIX C
1. End Loaded Cantilevers

In this appendix, we shall compute the weight of a min-
imum weight, constant depth, cantilever truss and beam sub-
jected to a concentrated end load. The truss geometry is defined

in Fig. 6 .

Fig. 6 END LOADED CANTILEVER TRUSS

Expressions are given below for the actual and virtual bar
forces and the bar lengths.

nik3
S = -1) 2 P V1+d?
n#+3 n=1,3,5,...N-1
_ 2 Y 2
u, = (-1) 1 + o
n
_ ¢_.132 Pan
Sp = (-1) 2
n n=2,4,6,...N
- (_1y2 oan
u, = (-1) 5
L =d V1 + o2 n=1,3,5,...N-1
Ln = 2a n=2,4,6,...N-2
Ln = a n =N
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where

(9

a/d
2(L/a)

N

L dhd

It is noted that the ratio S/u = P for each of the truss members.
Since this ratio is constant throughout the truss, the minimum
weight design and the uniform stress design are equivalent.

Using the expressions for Sn’ uos Ln’ the truss weight
may be computed from Eq. (10).

2
/2 1
w*_l{zw I LE
A !_o \Eo o'
r
FN-1 N-2 —
* _ 1 \ /P 2 " -/ P na P No
W=z 2 Vg +efd+ 3 VEG 2 22t VER 2
|n=1,3 =2,4
2
w* _ (l + o2 ;

'A(E73 a +L/d;‘

The minimum of this expression occurs when the web members are
placed at 45 degree angles, i.e., a = 1. The variation of w*
for angles near 45 degrees is quite small as can be seen from
Fig. 7. For a =1, W becomes

. 2
* _ _PL 2
VoS m@py (2L (32)

If an I-beam is used instead of a truss, its weight is computed
from Eq. (27) when

M = Px

m = X
= P

v =1
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and x is measured from the free end. Thus,

L [

' 2 12
- 1 4P 2P ‘
b = WETP U V—dxz—*\/—fé‘ dx.
A |

W, = ZKE%ES {(L/d)2 +’V[§—B(L/d) + % 52]

!

(33)

The ratio of beam to truss weight is found from Eq. (32)
and (33).

Ybeam _ w/a? +[-§B(L/d) +% g ] (L/d)% + 2.580 (L/d) + 1.667
Wiruss (2 + L/d)2 (2 + L/d)2

(34)
for 62 = 2.5, This ratio is plotted against L/d in Fig. 2.
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2. Cantilever Under a Triangular Loading

The truss defined in Fig. 8 shall be designed for minimum
weight and uniform stress. The resulting deflection designs
will be compared to a minimum weight, constant depth, I-beam
of equivalent stiffness.
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Fig. 8 TRUSS UNDER A TRIANGULAR LOADING

The actual and virtual bar stresses and the member lengths

for the truss are given by the following expressions:

-

n+3
— 2 2
= 2 Ra v 2 |n” 1
Sn—(-].) —LZ 1 +a ((4+12)
n=1,3,5,...N-1
n+3
u = (-1) - Vi + o2
s, = (-2 RES (@3 |
n 32 2
‘n = 2,4,6,...N
- (_13y0/2 _/m
u, = (-1) OL(Q')
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Ln =d 1 +a n=1,3,5, N-1
Ln = 2a n=2,4,6, N-2
Ln = a n =N

where
a = a/d
N = 2(L/a)

Substituting these into Eq. (10), we obtain the weight

of a minimum weight truss.

. 2
W 7R—fd(1+a) Z /& + 5

n=1,3

N-2 2

— 2 v 2 2
R b "R a~ a (N
VT ']73"‘&_ L, (’Z) Ve 77 @ }
Introducing the approximation
N-1 2
L
Z Ve'+ & Z @ =77

n=1, n=1, 3 a

*
W becomes

0 o R { o \/(5
27A(E/P) «.(LTd)

12
(1 +a ) + Z(L/d)j (35)
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For this loading, it is clear that the optimum web angle
is not 45 degrees. For L/d =1, a » 0.79; as L/d—ew, a—=1,

The weight of a uniform or constant stress truss is found from

Eq. (31). Using the expressions for S , u

o and Lo, Wc be?omes
" RaZa 2 a2
- 1 Ra
We = TORTeY > 25 a+a)@n’ + 1)
n=1,3
N-2 |
2 2 2 2
+ 5“ EE_% ) 2a+ 53—% (%) ale
oy 3L 3L
n=2,4
[ N-1 N-2 |
2 no N a !
[ d(1+d,)+ Z -2-2a+—2—ai
n=1,3 n=2,4 } (36)
W= RL [a3 + 20?4 9 4 2a(L/d) + (L/ay? +3+3(w/a)+ 2
c T GAE/p LT7d 7d / e ol

The ratio of the weights of the minimum weight truss and the
constant stress truss is found from Eq. (35) and (36). For
a = 1 it becomes

L 1 }2

Wnin, _ 27 L1373+ 2(L/d) + 75y

Yeonst. 1 (@W/d)2 + 5(L/Q) + 7 + r2ay |
[ (L7d) |

(37)

This ratio is plotted against L/d in Fig. 2.

The following expressions give the actual and virtual
bending moments and shear acting on an I-beam subjected to a
triangular loading.

R x3
Nl
m =

L
v=1
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where x is measured from the free end of the cantilever. Using
these relationships, the weight of a minimum weight I-beam can
be computed from Eq. (27); thus,

]
L |
wb=A%‘.p '[o,(\/b,Rx /?Rxg)dx;

d 3L
4RLZ 3V2 )
Wy = 27A(ETRY (T5+H (38)

The ratio of the weights of the minimum weight beam and the
minimum Welght truss can be found from Eq. (35) and (38).
For ¢« = 1 and B = 2,5, the ratio becomes

;]Beam ) 4(1.667 + L/d)? , (39)
truss
[5 .196 + 2(L/d) + T—/'gy]

This ratio is plotted against L/d in Fig. 2.
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APPENDIX D
NOTATION

Bar area, or beam area

Optimum bar area

Flange areas of an I-beam

Minimum allowable area of a truss member

Web area of an I-beam

Defined where used
Defined where used
Defined where used

Half the distance between panel points of a truss,
or overhang distance

Constant, or linear dimension

Truss or beam depth

Modulus of elasticity

W - W*

Modulus of rigidity

Moment of inertia

Constant

Length of a truss member, or span of a beam or truss
Bending moment

Virtual bending moment

Total number of truss members

The number of a truss member; integral variable
Concentrated end load

Total triangular load
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S Beam span; Bar force
u Virtual bar force
\Y External shear force
v Virtual shear force
Beam or truss weight
* Minimum truss weight
Wb Minimum beam weight
Wc Weight of a constant stress truss
¢ Minimum truss weight
X Independent variable
a = a/d...also, shape factor
v Constant multiplier
p Weight density
o Stress level
e Web angle
A Specified deflection or deflection
A Lagrangian multiplier
c Subscript denoting closed or defined members
o‘ Subscript denoting open members
i Subscript denoting a specific truss member
B = VET(;
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11.
12,

13.
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